The Carbon Cycle and its Role in Climate Change: Activity 3

Grade Level(s): 5-8

Time Required: One 45-minute class period

Focus Question:
• What are the human influences on the carbon cycle?

Learning Objectives:
• The students will be able to explain that fossil fuels release carbon.

Materials:
• Supplies from Activity #1
• Supplies to set up a city in miniature, one set for the class to share. You can use toys or boxes to represent a power plant, oil refinery, gas station, houses, cars, or any other buildings of your choice.
• Signs to label buildings
• String (to represent power lines)
• Dirt or sand
• Blanket (labeled CO₂)
• Materials to create a mural

Background:
• The students have heard about global warming, but most do not yet have the chemical background to understand what is happening. This activity is designed to give them a basic chemical understanding of the carbon cycle and thereby giving them an understanding of why healthy plants are essential to a healthy habitat. While other greenhouse gases (besides carbon dioxide) are also important, carbon is the example covered here. It is also important for the students to understand that there are other greenhouse gases.

The story of Democritus' definition of the atom can be used to set a basic understanding. Using cheese as a prop as you talk will maintain the student's curiosity. The story, in brief, is as follows: Democritus stated that if you take a piece of cheese and cut it in half, you still have cheese. If you take that half and cut it again, the smaller piece is still cheese. If you take that tiny piece and cut it again the tinier piece is still cheese. If you could continue cutting the cheese into tinier and tinier pieces you would eventually come down to the most basic of all particles that still have all the qualities of cheese. Democritus called that fundamental particle the atom.

We now know that cheese is not a fundamental particle, but we still use his word for the fundamental particle, the atom. There are 108 different atoms. They are the fundamental particles or building blocks from which all matter is made. In this lesson we are going to
look at only a few of them. The atom that is found in all living things on earth is carbon. In the upcoming activities note especially where the carbon atoms are going.

Procedures/Instructional Strategies:

1. Assign roles to the students as miners, power plant operators, car drivers, or home owners. Have them set up the little city of boxes or toys near the circle that used to be the forest and now represents a mine.
 - Explain to the students that a long time ago some forests and swamps died and were buried in the earth by geologic forces. Put some dirt or sand over the sugar signs (See Carbon Cycle Activity 1).

2. Explain that after a long time, and a lot of pressure from the dirt and rocks above and heat from the earth below, the forests turned into fossil fuels such as gas, oil, and coal.
 - Pull out a black “sugar” sign and show the oil, coal, or gas label.
 - Put the “mine” sign on the site that was once a tree and is now a mine.

3. Have some students acting as miners take the oil, coal, or gas out of the ground. They should take the oil signs to a refinery, the coal signs to a power plant, and the gas signs to a gas company.
 - Now the students working for each of the companies delivers the sign to the appropriate next place, such as a gas station or gas tanks at the homes.

4. Stop the students and explain that up to this point, the carbon has stayed locked in the fuel. Remind the students about the respiration equation. Explain that burning is the same as respiration, breaking the sugar (carbon compounds), and reassembling the CO₂.

5. Next have the students act as people in the city burning the fuel. Every time someone uses energy (drives a car, makes toast, watches a movie, heats their house), the CO₂ blanket gets pulled farther out of the mine (the “miner” students can do this) and the Earth gets warmer.
 - As the blanket is pulled out of the mine, begin to explain how this increases the warmth of the Earth.

6. Have the students create a mural for the classroom wall that illustrates the path of the carbon from dead forest, to fossil fuel, to mine, to power plants, to homes and cars, and finally to the air.

7. Evaluate students by asking them to write a brief constructed response to the following prompts:
 - Explain the path of one carbon atom starting in the air and going back to the air or staying in a plant.
 (The carbon atoms in the air are usually attached to oxygen as CO₂. The CO₂ is used by a plant in photosynthesis, in which the carbon atom is attached to more carbon, oxygen and hydrogen atoms to make sugar which is stored in the plant or used to build other molecules which become part of the plant’s cells. The
carbon stays in the plant until the plant dies and decomposes, then the large sugar molecules break apart, decompose, and the carbon returns to the air as part of a CO2 molecule.)

- Explain one action you can take to lower your carbon footprint. Use chemistry to explain why your action would use less carbon and why your action would reduce global warming. (Answers will vary. Possibilities include planting trees and actions which reduce the use of fossil fuels.)

Extensions:

- Have the students research alternative energy sources. Have them compare the carbon footprint of each source of energy.
- Ask students if there is anything an animal can do to reduce global warming? Tell them to use chemistry and the carbon cycle in their explanation.

National Science Education Standards:

Physical Science

- Substances react chemically in characteristic ways with other substances to form new substances (compounds) with different characteristic properties. In chemical reactions, the total mass is conserved. Substances often are placed in categories or groups if they react in similar ways; metals is an example of such a group.
- Chemical elements do not break down during normal laboratory reactions involving such treatments as heating, exposure to electric current, or reaction with acids. There are more than 100 known elements that combine in a multitude of ways to produce compounds, which account for the living and nonliving substances that we encounter.
- The sun is a major source of energy for changes on the earth’s surface. The sun loses energy by emitting light. A tiny fraction of that light reaches the earth, transferring energy from the sun to the earth. The sun’s energy arrives as light with a range of wavelengths, consisting of visible light, infrared, and ultraviolet radiation.
- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.
- In most chemical and nuclear reactions, energy is transferred into or out of a system. Heat, light, mechanical motion, or electricity might all be involved in such transfers.

Life Science

- Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some micro-organisms are producers—they make their own food. All animals, including humans, are consumers, which obtain food by eating other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.
- For ecosystems, the major source of energy is sunlight. Energy entering ecosystems as sunlight is transferred by producers into chemical energy through photosynthesis. That
energy then passes from organism to organism in food webs.

Earth Science

- The atmosphere is a mixture of nitrogen, oxygen, and trace gases that include water vapor. The atmosphere has different properties at different elevations.
- Living organisms have played many roles in the earth system, including affecting the composition of the atmosphere, producing some types of rocks, and contributing to the weathering of rocks.
- The sun is the major source of energy for phenomena on the earth’s surface, such as growth of plants, winds, ocean currents, and the water cycle. Seasons result from variations in the amount of the sun’s energy hitting the surface, due to the tilt of the earth’s rotation on its axis and the length of the day.

Science and Technology

- Perfectly designed solutions do not exist. All technological solutions have trade-offs, such as safety, cost, efficiency, and appearance. Engineers often build in back-up systems to provide safety. Risk is part of living in a highly technological world. Reducing risk often results in new technology.
- Technological solutions have intended benefits and unintended consequences. Some consequences can be predicted, others cannot.

Science in Personal and Social Perspectives

- Natural environments may contain substances (for example, radon and lead) that are harmful to human beings. Maintaining environmental health involves establishing or monitoring quality standards related to use of soil, water, and air.
- Human activities also can induce hazards through resource acquisition, urban growth, land-use decisions, and waste disposal. Such activities can accelerate many natural changes.
- Natural hazards can present personal and societal challenges because misidentifying the change or incorrectly estimating the rate and scale of change may result in either too little attention and significant human costs or too much cost for unneeded preventive measures.
- Internal and external processes of the earth system cause natural hazards, events that change or destroy human and wildlife habitats, damage property, and harm or kill humans. Natural hazards include earthquakes, landslides, wildfires, volcanic eruptions, floods, storms, and even possible impacts of asteroids.
- Risk analysis considers the type of hazard and estimates the number of people that might be exposed and the number likely to suffer consequences. The results are used to determine the options for reducing or eliminating risks.
- Students should understand the risks associated with natural hazards (fires, floods, tornadoes, hurricanes, earthquakes, and volcanic eruptions), with chemical hazards (pollutants in air, water, soil, and food), with biological hazards (pollen, viruses, bacterial, and parasites), social hazards (occupational safety and transportation), and with
personal hazards (smoking, dieting, and drinking).

- Individuals can use a systematic approach to thinking critically about risks and benefits. Examples include applying probability estimates to risks and comparing them to estimated personal and social benefits.
- Important personal and social decisions are made based on perceptions of benefits and risks.
- Science influences society through its knowledge and world view. Scientific knowledge and the procedures used by scientists influence the way many individuals in society think about themselves, others, and the environment. The effect of science on society is neither entirely beneficial nor entirely detrimental.
- Societal challenges often inspire questions for scientific research, and social priorities often influence research priorities through the availability of funding for research.
- Technology influences society through its products and processes. Technology influences the quality of life and the ways people act and interact. Technological changes are often accompanied by social, political, and economic changes that can be beneficial or detrimental to individuals and to society. Social needs, attitudes, and values influence the direction of technological development.
- Science cannot answer all questions and technology cannot solve all human problems or meet all human needs. Students should understand the difference between scientific and other questions. They should appreciate what science and technology can reasonably contribute to society and what they cannot do. For example, new technologies often will decrease some risks and increase others.
- Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.
- In areas where active research is being pursued and in which there is not a great deal of experimental or observational evidence and understanding, it is normal for scientists to differ with one another about the interpretation of the evidence or theory being considered. Different scientists might publish conflicting experimental results or might draw different conclusions from the same data. Ideally, scientists acknowledge such conflict and work towards finding evidence that will resolve their disagreement.
- It is part of scientific inquiry to evaluate the results of scientific investigations, experiments, observations, theoretical models, and the explanations proposed by other scientists. Evaluation includes reviewing the experimental procedures, examining the evidence, identifying faulty reasoning, pointing out statements that go beyond the evidence, and suggesting alternative explanations for the same observations. Although scientists may disagree about explanations of phenomena, about interpretations of data, or about the value of rival theories, they do agree that questioning, response to criticism, and open communication are integral to the process of science. As scientific knowledge evolves, major disagreements are eventually resolved through such interactions between scientists.

References: